
A deeper look 1   The Debye–Hückel theory

The strategy for the development of the Debye–Hückel 
theory of electrolyte solutions is to establish the rela-
tion between the work needed to charge an ion and its 
chemical potential. Then that work is related to the ion’s 
interaction with the atmosphere of counter ions that has 
assembled around it as a result of the competition of the 
attraction between oppositely charged ions, the repulsion 
of like-charged ions, and the distributing effect of thermal 
motion.

Step 1  Calculate the work of charging an ion
Imagine a solution in which all the ions have their actual 
positions, but in which their Coulombic interactions have 
been turned off and so are behaving ‘ideally’. The differ-
ence in molar Gibbs energy between the ideal and real 
solutions is equal to we, the electrical work of charging the 
system in this arrangement. For a salt MpXq,
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From eqn 5F.26 (µi = µi
ideal + RT ln γ±) the terms in paren-

theses are written as

µ+ idealµ− +  = µ− idealµ− −  = RT ln γ±

so it follows that
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and therefore 
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This equation implies that the final distribution of the ions 
and then the work of charging them in that distribution 
must be found.

Step 2  Calculate the Coulomb potential experienced by 
an ion
The Coulomb potential at a distance r from an isolated ion 
of charge zie in a medium of permittivity ε is

φ ε= = π
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r Z z e
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However, the ionic atmosphere causes the potential to 
decay with distance more sharply than this expression 
implies. Such shielding is a familiar problem in electro-
statics, and its effect is taken into account by replacing the 

Coulomb potential by the shielded Coulomb potential, an 
expression of the form

Z
r ei
i r r/ Dφ = − � Shielded Coulomb potential   (3b)

where rD is called the Debye length. When rD is large, the 
shielded potential is virtually the same as the unshielded poten-
tial. When rD is small, the shielded potential is much smaller 
than the unshielded potential, even for short distances (Fig. 1).

To calculate rD, it is necessary to know how the charge 
density, ρi, of the ionic atmosphere, the charge in a small 
region divided by the volume of the region, varies with 
distance from the ion. This step draws on another standard 
result of electrostatics, in which charge density and poten-
tial are related by Poisson’s equation:

2φ ρ
ε∇ = − � Poisson’s equation   (4a)

where ∇ = + +x y z∂ /∂ ∂ /∂ ∂ /∂2 2 2 2 2 2 2. Because the ionic 
atmosphere is spherically symmetric the charge density 
varies only with distance from the central ion and eqn 4a 
becomes
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Substitution of the expression for the shielded potential 
(eqn 3b) results in

r i
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2 εφ
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Step 3  Calculate the Debye length
To solve eqn 5 for rD, ρi must be related to ϕi. For this step, 
note that the energy of an ion depends on its closeness to 
the central ion, and then use the Boltzmann distribution  

Figure 1  The variation of the shielded Coulomb potential 
with distance for different values of the Debye length, rD/a. 
The smaller the Debye length, the more sharply the potential 
decays to zero. In each case, a is an arbitrary unit of length.
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to evaluate the probability that an ion will be found at  
each distance.

The energy of an ion j of charge zje at a distance where 
it experiences the potential ϕi of the central ion i relative 
to its energy when it is far away in the bulk solution is its 
charge zje times the potential ϕi. Therefore, according to 
the Boltzmann distribution, the ratio of the molar concen-
tration, cj, of ions at a distance r where their electrostatic 
energy is z ej iφ  and the molar concentration in the bulk, c j°, 
where their electrostatic energy is zero, is

c
c

ej

j

z e kT/j i
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The charge density, ρi, at a distance r from the ion i is 
the molar concentration of each type of ion multiplied 
by the charge per mole of ions, zieNA = ziF (F is Faraday’s 
constant, F = eNA). It follows that
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Because the average electrostatic interaction energy is small 
compared with kT it is permissible to use �= + +xe 1x  
and to write the charge density as
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The term in blue is zero because it is the charge density in 
the bulk, uniform solution, and the solution is electrically 
neutral. The replacement of e by F/NA and NAk by R results 
in the following expression:

c z c z F
RT( )i

i2 2
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ρ φ= − ° + °+ + − − � (8)

The higher-order unwritten terms are assumed to be too 
small to be significant. This equation can be expressed in 
terms of the ionic strength by noting that in the dilute 
aqueous solutions being considered c ≈ bρ, where ρ is the 
mass density of the solvent. Therefore

c z c z b z b z Ib( ) 22 2 2 2
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With these approximations, eqn 8 becomes
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When this expression is substituted into r /i iD
2 εφ ρ= − , the ϕi 

cancel and the result is
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Step 4  Calculate the work of charging the ion in the pres-
ence of the ionic atmosphere
To calculate the work of charging the central ion it is  
necessary to know the potential at the ion due to its  
atmosphere, ϕatmos. This potential is the difference between 
the total potential, given by eqn 3b, and the potential due 
to the central ion itself:
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The potential at the central ion (at r = 0) is obtained by tak-
ing the limit of this expression as r → 0 and is
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This expression shows that the potential due to the ionic 
atmosphere is equivalent to the potential arising from 
a single charge of equal magnitude but opposite sign to 
that of the central ion and located at a distance rD from 
the ion. Therefore, if the charge of the central ion were 
Q and not zie, then the potential due to its atmosphere  
would be

φ ε( )= − π
Q
r0 4atmosphere
D

� (11c)

The work of adding a charge dQ to a region where the elec-
trical potential is ϕatmosphere(0) (from dw = ϕdQ), is

dwe = ϕatmosphere(0)dQ� (12)

It follows that the total molar work of fully charging the 
ion i in the presence of its atmosphere is
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Step 5  Evaluate the activity coefficient
The total work of charging p cations and q anions in the 
presence of their atmospheres is we = pwe,+ + qwe,−, and 
therefore the mean activity coefficient of the ions is

γ ε=
+

= − +
π±

+ − + −pw qw
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However, for neutrality pz+ + qz− = 0; therefore
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It then follows that
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The replacement of rD with the expression in eqn 10  
gives
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where terms have been grouped to show that this expres-
sion is beginning to take the form of the limiting law 

(log γ± = −|z+z−|AI1/2). Indeed, conversion to common loga-
rithms (by using ln x = ln 10 × log x) gives
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which is the Debye–Hückel limiting law (eqn 5F.27) with
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