
A deeper look 4   The energy of the bonding 
molecular orbital of H2

+

The goal is to calculate the energy of the σ orbital of the 
hydrogen molecule-ion, written as the linear combination 
ψ+ = N+(ψA + ψB). In general, the energy is the expectation 
value of the hamiltonian operator. Therefore, the energy 
E+ of ψ+ is

E H* ˆ d∫ψ ψ τ=+ + +

with the hamiltonian given by eqn 9B.1 and N+ =  
1/{2(1 + S)}1/2. Begin by writing a general expression for E+, 
and then refine it by recognizing that ψA and ψB are H1s  
atomic orbitals.

Step 1  Write a general expression for the expectation value
Begin by using eqn 9B.1 to write
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where j0 = e2/4πε0. Because the wavefunction is real, the 
expectation value of the hamiltonian is
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Step 2  Evaluate the first term
With ψ+ = N+(ψA + ψB), and after some algebra, the first 
term in the expression from Step 1 expands to
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To see how the integrals give rise to the quantities in red, 
consider the following:

•	 The terms − ∇ −� m j r( /2 ) /2
e 1

2
0 A1 and − ∇� m( /2 )2

e 1
2  

− j /0 rB1 have the form of the hamiltonian of a hydro-
gen atom (Topic 8A). Because in this case ψA and ψB 
are H1s orbitals centred on A and B, respectively, it 
follows that
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	 where E1s is the energy of the H1s orbital, and S is the 
overlap integral.

•	 Because the atoms are identical
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Therefore, in terms of the parameters E1s, S, j, and k, the 
first term simplifies to
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Step 3  Evaluate the second term
The second term in the expression from Step 1 is the  
contribution to the energy from the repulsion between 
nuclei. Because j0/R is a constant and the wavefunction is 
normalized, that term simplifies to
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Step 4  Combine the expressions from Steps 2 and 3
Because H1s orbitals were used to arrive at the result in 
Step 2, write E+ = Eσ, the energy of the σ molecular orbital 
and
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With N+ = 1/{2(1 + S)}1/2, it follows that
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as in eqn 9B.4.
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