
A deeper look 9   The virial and the virial 
equation of state 

This section shows how the equation of state for a dilute 
fluid in which the interactions between molecules are 
isotropic and pairwise (Topic 14C),
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with the virial r( )2v  given by
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results in a virial equation of state from which the van der 
Waals parameters can be identified.

Step 1  Set up an expression for the potential energy
Consider a potential energy that has a hard core and a 
shallow rectangular trough (Fig. 1):
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Step 2  Evaluate the contribution of the virial
The potential energy has abrupt steps at which the virial 
is not defined. To proceed, use the physical interpretation 
that 2v (r) is the work done to move a molecule from r to 
infinity. In this case, the work done, the interpretation of 
rdV2/dr as explained in the text, is ε provided the initial 
separation is between R1 and R2, and zero beyond R2. 
Equation 1a then becomes
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The denominator of the first term on the right has been 
changed from V to V − nb to accommodate the effect of 
the hard core, which reduces the volume available to the 

molecules. Provided the fluid is dilute in the sense nb << V,  
this term can be expanded as follows:
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Step 3  Evaluate the integral
If the well is so shallow that the particle distribution is 
uniform, then g(r) = 1 and
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It follows that
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Step 4  Compare this equation of state with the virial equa-
tion of state and identify the second virial coefficient
The virial equation of state is

�p nRT
V

nB
V1{ }= + + � (6)

By comparing this expansion with eqn 5, the second virial 
coefficient B can be identified as
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Figure 1  The potential energy considered in this calculation.
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Figure 2  The volume excluded (the central grey cavity) and 
the volume where attraction takes place (the light grey zone).
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The volume enclosed between the radii R1 and R2 (Fig. 2) 
is vattract = R R(4 /3)( )2

3
1
3π − , and its molar value is vattract,m = 

NAvattract, so
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where N .m Aε ε=

Step 5  Identify the van der Waals parameters
The van der Waals equation of state is
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By using the same expansion as above when nb << V, this 
equation becomes 
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Finally, by comparing this expansion with eqn 6 it follows 
that the second virial coefficient is related to the van der 
Waals parameters by

B b a
RT= − � (9)

and comparison of this relation with eqn 7 shows that the 
parameter a can be identified as
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The parameter b is related to the volume of each molecule, 
vmolecule, and the corresponding molar molecular volume, 
vmolecule,m = NAvmolecule. The radius of each molecule is  
1
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= π N R(4 /3)1
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each molecule excludes a volume R(4 /3)1
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3π  (as depicted in 
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For another illustration of how the potential energy 
depicted in Fig. 1 plays a role in the formulation of the van 
der Waals equation, see A deeper look 7. 




