
The chemist’s toolkit 20   Angular 
momentum

Angular velocity, ω (omega), is the rate of change of angu-
lar position; it is reported in radians per second (rad s−1). 
There are 2π radians in a circle, so 1 cycle per second is 
the same as 2π radians per second. For convenience, the 
‘rad’ is often dropped, and the units of angular velocity 
are denoted s−1.

Expressions for other angular properties follow by anal-
ogy with the corresponding equations for linear motion 
(The chemist’s toolkit 3). Thus, the magnitude, J, of the 
angular momentum, J, is defined, by analogy with the 
magnitude of the linear momentum (p = mv):

J Iω= � (20.1)

The quantity I is the moment of inertia of the object. It 
represents the resistance of the object to a change in the 
state of rotation in the same way that mass represents the 
resistance of the object to a change in the state of transla-
tion. In the case of a rotating molecule the moment of 
inertia is defined as
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where mi is the mass of atom i and ri is its perpendicular 
distance from the axis of rotation (Sketch 20.1). For a 
point particle of mass m moving in a circle of radius r, the 
moment of inertia about the axis of rotation is

I = mr2� (20.3)

The SI units of moment of inertia are therefore kilogram 
metre2 (kg m2), and those of angular momentum are kilo-
gram metre2 per second (kg m2 s−1).
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Sketch 20.1

The angular momentum is a vector, a quantity with both 
magnitude and direction (The chemist’s toolkit 17). For 
rotation in three dimensions, the angular momentum has 
three components: Jx, Jy, and Jz. For a particle travelling on 
a circular path of radius r about the z-axis, and therefore 
confined to the xy-plane, the angular momentum vector 
points in the z-direction only (Sketch 20.2), and its only 
component is

Jz = ±pr� (20.4)

where p is the magnitude of the linear momentum in the 
xy-plane at any instant. When Jz > 0, the particle travels in 
a clockwise direction as viewed from below; when Jz < 0, the 
motion is anticlockwise. A particle that is travelling at high 
speed in a circle has a higher angular momentum than a 
particle of the same mass travelling more slowly. An object 
with a high angular momentum (like a flywheel) requires 
a strong braking force (more precisely, a strong ‘torque’) to 
bring it to a standstill.
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Sketch 20.2
The components of the angular momentum vector J when 

it lies in a general orientation are

Jx = ypz − zpy    Jy = zpx − xpz    Jz = xpy − ypx� (20.5)

where px is the component of the linear momentum in the 
x-direction at any instant, and likewise py and pz in the 
other directions. The square of the magnitude of the vec-
tor is given by
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By analogy with the expression for linear motion (Ek = 
v =m p m/21

2
2 2 ), the kinetic energy of a rotating object is
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For a given moment of inertia, high angular momentum 
corresponds to high kinetic energy. As may be verified, the 
units of rotational energy are joules (J).

The analogous roles of m and I, of v and ω, and of p and 
J in the translational and rotational cases respectively pro-
vide a ready way of constructing and recalling equations. 
These analogies are summarized below:

Translation Rotation

Property Significance Property Significance

Mass, m Resistance to 
the effect of a 
force

Moment of 
inertia, I

Resistance to the 
effect of a twisting 
force (torque)

Speed, v Rate of 
change of 
position

Angular 
velocity, ω

Rate of change of 
angle

Magnitude 
of linear 
momentum, p

p = mv Magnitude 
of angular 
momentum, J

J = Iω

Translational 
kinetic energy, 
Ek

Ek = 12 �mv2 = 
p2/2m

Rotational 
kinetic energy, 
Ek

Ek = 1
2 Iω2 = J 2/2I




