(1) Evaluate the double integral [[ 2?(1— 22— y?) dzdy over an origin-
centred circle of radius 1in (a) Cartesian, and (b) polar, coordinates.
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We replaced the integral over the whole circle by four times that for the posi-
tive quadrant. This was permissible because of the symmetry of the integrand,
2? (1— 2% — y?), which has the same value for a given magnitude of = and y
independent of their signs.

(b) In polar coordinates, r and 6, the area element dx dy takes the form
rdrdf. Therefore, putting x = rcosf and y = rsin#é, we have
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Reassuringly, we obtain the same value of the double integral using both Carte-
sian and polar coordinates. The effort required to do the calculation is far less
for (b) than (a), however, and illustrates the point that problems are best formu-
lated in a coordinate system which matches the symmetry of the situation being
considered. In this case we were integrating over a circular region, and so polar
coordinates represent the most natural choice; if it had been a rectangular or
triangular (with a right-angle) domain, then Cartesians would have been better.



