
Answers to additional problems

16.1	 The Planck function, 
G
T

� [1]

This is a fraction and therefore a quotient.
16.2	 The rate of reaction follows an equation of the type 

rate = k c

during a first-order reaction. Here c is a concentration, k is the rate constant,  
and t is the time.� [1]
The two terms are multiplied together, so a product.

16.3	 The conductivity λ  of an ion through a solution is a function of the mobility μ and the ion 
charge z, 

� �� z F � [1]

Three terms are multiplied together, so a product.

16.4	 Rewriting the expression slightly, ϕatm = 
Z kr

r
Z
r

i iexp( )


where k =1/rD. The derivative of the second term, –Zi /r is simply Zi /r2. 
Concerning the main function,

If   u = Zi exp(–kr)   then  du/dx  = –kZi exp(–kr)

If   v = r             then  dv/dx   = 1

Inserting terms into the quotient rule yields,
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Factorizing yields,        
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Inserting for k yields, 
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16Differentiation IV
The product rule and the quotient rule

16.5	 1.	 If  u = sin 2x  then  du/dx = 2 cos 2x
If  v = x3                 then  du/dx = 3x2

Inserting terms, 
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Factorizing yields,  d
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2.	 If  u = sin 2x  then  du/dx = 2 cos 2x
If  v = x–3      then  dv/dx = –3x–4

Inserting terms, 
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2 16: Differentiation IV

16.6	 1.	 We obtain the derivative of exp ((a + b)x) straightforwardly using eqn. (14.1).

We say 
d
d

y
x

= (a + b) exp((a + b)x)

2.	 We require the product rule to differentiate y = exp (ax) exp (bx),

If u = exp(ax)	 then	
d
d

u
x

 = a exp(ax)

If v = exp(bx)	 then	
d
d

v
x

 = b exp(bx)

Inserting terms into eqn. (16.1) yields,
d
d

y
x

 = exp(ax) [b exp(bx)] + exp(bx) [a exp(ax)]

Factorizing yields, (a + b) {exp(ax) exp(bx)}
Equation (9.4) tells us that, exp(ax)  exp(bx) = exp  ((a  +  b)x). Substituting for 

exp ((a + b)x) in (1) yields (2).
So the results are the same.

16.7	 The problem is a quotient.
If	 u = 4ξ2	 then	 du/dξ = 8ξ
If	 v = 1– ξ2	 then	 dv/dξ = –2ξ

Inserting terms, 
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Multiplying out the brackets, 
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16.8	 The problem is a product.

If	 u = AN 1
2	 then	
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if	 v = exp( )BN 1 	 then	
d
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 = –BN–2 exp(BN–1)	 where B
n
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Inserting terms,               
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Factorizing yields,          
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Re-inserting A and B terms,
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Finally, a little tidying, 
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16.9	 Here,  y 
sin
cos





 which is a quotient,

If 	 u = sin θ	 then	
d
d

u


 = cos θ

We will need the chain 
rule to obtain the  
derivative of v.

The N term on the far 
right-hand side comes 
from N–3/2 = N–1 × N–½.

In the second term, top and bottom are multiplied by x,
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and placing over a common denominator of x4 
d
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y
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3.	 The two expressions in parts (1) and (2) are the same.
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316: Differentiation IV

If	 v = cos θ	 then	
d
d

v


 = –sin θ

Inserting terms into the quotient rule yields,
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We can simplify this expression further because the top line is eqn. (11.13). sin2 θ + cos2 θ 
= 1 so,
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16.10	 �This problem is a product. For the purpose of this calculation, the central term exp
∆S

R
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can be regarded as a constant, which we will call c.

If 	 u = 
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h
B 	 then	
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Inserting terms into the product rule,
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Factorizing,	             
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Tidying yields,	             
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Finally, re-substituting for c, 
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We need the chain rule to 
obtain the derivative of v.

Further cancelling has 
simplified the T term in 
the final bracket.
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