Differentiation VI

Partial differentiation

Answers to additional problems

18.1

18.2

18.3

18.4
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Total differential dv = (ﬂj T + v dp +(ﬂj dn
oT 6p on

Equation from the question dV = aV dT —«V dp +V, dn
1 2 3 4 5 6 7

(o))

Comparing the 2terms  aV = (—VJ thermal expansivity « = %(%)

o))

S5
<

Comparing the 4 terms -«xV=| — | isothermal compressibility, x = v
op V\ op

Comparing the 6 terms V= (Z—V) molar volume
n

¢ Inthis example subscripts have been omitted to enhance clarity.

Inserting terms into the template expression in eqn. (18.4) yields,

dE=[6—E) av+ (6’5) d1+(‘lEj dt
V), o ), e )y,

From Worked Example 18.6, G V and ( %G ] =-S
p ), aT

. . ' . 6 G
We differentiate the first expression by T —T a—

. . . 6 G
We differentiate the second expression by T a— —T

. . . \4

Euler reciprocity lets us equate these two equations (—T] [ j

Differentiating the equation with respect to T at constant volume, V,

(5, -(5), () v

The 0U/0T term is the heat capacity at constant volume C,. The equation becomes,

(5, - ()
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2 18: Differentiation VI

We can go further and say the derivative (6p/dT), is the ratio of thermal expansivity a and
isothermal compressibility « (see Self test 18.4.1).

Therefore,(a—H) =CV+(Z)V
oT )y K

18.5  We start by multiplying the Clausius equality by 1 from the ‘dodge’ 1 = (6T/3T),

dS:ﬂxa—T
T oT

We can safely substitute H for q if we do no expansion work. We then rearrange slightly,

ds= (aﬂj < Lar
or) T
where the term in brackets is simply C,
We therefore obtain the desired equation, dS = Cp/ TdT.

18.6  Strategy

We rearrange the van der Waals equation to make T the subject.

We differentiate T with respect to Vas, (0T/dV), .

We then differentiate this function with respect to p calling it (6*T/0pdV),.
We differentiate T with respect to p as (0T/dp),

We then differentiate this function with respect to V calling it (6°p/6Vép).
We compare the two results in parts 3 and 5.

o hrwWN =

Solution

1 217-2
1. T=— V) (V-nb
nR(p+an )(V —nb)

2 2
2 I —i([p+%jx1+(V—nb)x—2‘(;n J

vV nR 3
2.

3. or _ 1 Because the only term which includes p is N X p
opdV.  nR nR

a. T Ly
op nR

s, 0T _1

" oVep nR
6. The answers in parts 3 and 5 are clearly the same.
18.7 U dT + U av=T s dT + 8 dv |-pdv
ar ), v ). oT ), v ),

Total differential of dU Total differential of dS
We then simplify by saying dV = 0. Therefore,

(‘lU) dT:T(a—S) dr
or ), or ),

. . . ou oS
Dividing both sides by dT'yields,| — | =Cy =T| —
ividing both sides by dT yields [OT JV v (aTJV

ol 0.62nFAD% "

18.8 1. —=
oc v
&I _1 0.62nFA D%w% 0.62nFAD”
dwoc 2 ) 2o So
s oI 70.31n_FAD%
Odwdc Jo Yo
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18: Differentiation VI 3

o _1 _0.62nFAc D% 0.62nFAcD?

ow 2 o 2Jo So

0’ _0.31nFA p*

S0 =
dcdw Jo Yo
2 2
We see how, ol = oT
dcdw  Owdc

18.9  We note how the exponential’s argument i¢ is complex as defined in Chapter 25.

Next, we calculate the individual derivatives found in the expression for A%,

2,
a—W:Ncosﬁ el 9 Vg =—Nsinf e
06 00

2
%—‘g= iNsing e g Y _i2Nsing e* =—Nsin@ el

0
We then substitute for these values,

o’y cosf oy 1 %y

ANy= +
V=3¢ " sin0 06 " sin’ 6 o¢
AZW:*NSineew‘F&SOXNCOSGeW+ ——x—Nsinge"
sin@ sin” 0

i¢
Ay :Ni(—sin2 0 +cos?0-1)
sinf

Simplifying this expression and using the trigonometric identity, sin?6 + cos?6 = 1 (see

Chapter 11),
. Ne® . ) . i
A%y =—— (-sin? @ + cos? @ (sin? O + cos*0))
sinf
which simplifies to give us,
_9Nsin2 geit )
Aly= M =-2Nsinfe"
sinf

We can write this last expression as, A2y = 2y =-I X ((+ 1) y.
Therefore, the wavefunction is indeed a spherical harmonic with [ = 1 (it is actually
Yim =Y10).

18.10 Asin Additional Problem 18.9, we first note that the argument of the exponential i¢) is
complex as defined in Chapter 25.

We calculate the individual derivatives found in the expression for A%,

oy = (cos? 0 — sin?6) Ne
00

oty
o

= (-2 sin § cos O — 2 cos @ sin #) Ne'¥ = —4sin € cos O Ne'?

v =1iNsin 6 cos e
o9

oty
o¢*

=12Nsin 0 cos § e = —N sin 0 cos O e'*
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4 18: Differentiation VI

then, we substitute for these values,

62y/+ cosfoy 1 oy

Ay=
V=% " sin0 06 " sin’ 0 o¢

x—NsinfcosOe*

A*y=—4sinfcos O Ne Jrc.o—sgx(cos2 0—sin® B)New +— 12
sinf sin” 0

Simplifying this expression gives,

Ay Ncos@e"

sin

(—4sin?0 + cos?O—sin?>0-1)

Using the trigonometric identity, sin?0 + cos® 0 = 1 (see Chapter 11),

iy
Ay= M(—S sin® 0 + cos® 0 (sin* @ + cos® )
sin

which simplifies to,

_ —6Nsin®fcosfe'

- =-6Nsinfcosfe”
sinf

Ay
This can be written as, A2 y=—6y=-2x(2+1)y.
The wavefunction is therefore a spherical harmonic with [ = 2. (Itis actually ¥;,, =Y,;.)

An alternative approach would have us use some of the trigonometric relationships found

in Chapter 11. We notice that, y= %smze el’,

WY _ Neos20e =2C.L29 v

00 sin26

o’y . i
=—2Nsin20e" =4

o6 v

2
0 v; —2Nin2g e =y
o¢ 2

then, we substitute for these values,

cos O cos20 1
- : y+—— X
sin@ sin26 sin” 60

ANy=-4y+2 4

Substituting for sin 20 and cos 26 gives,

A2y= ll/(—4+ 2cos0(2cos* H—1) 1 ]

2sin® fcos @ sin’@
which we can simplify further as,

A= 4
Y= sin%0

(=4 sin? 0 + 2cos?0-2)
Using the trigonometric identity, sin? 6 + cos?0 = 1,

Aly=— l’; (-4 sin? @ + 2cos? 6 -2(sin? 0 + cos?))
sin® 6

which simplifies to Ay=— Wz X —6sin? 6
sin” 0

and hence, A2y = -6y
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