
Answers to additional problems
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31.2	
Rearranging the Boltzmann distribution given in eqn. (31.2), 
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For degenerate energy states, we need to include the degeneracy gi in the calculation of Ni, 

as we did for eqn. (31.5), N g
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We can write this as  
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 where ΔE = ε2 – ε1. 

31.3	 The most accessible, highest-energy electron to be removed during ionization is that in a 
non-degenerate 3s orbital. We assume both states have a degeneracy of 1. Using the equa-
tion derived in Additional Problem 31.2,
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We have used RT here instead of kBT since the energy is given in molar units (J mol−1).

31.4	 As for the similar halogen molecule in the Worked Example 31.8, we assume that the 
degeneracy of the ground state for a chlorine molecule is 1 and for a chlorine atom is 4. 
The energy difference between the states ΔE = 242 kJ mol−1.

Using the equation from Additional Problem 31.2
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Note how the magnitude of this proportion is of parts per million even at this very high 
temperature.

31.5	 The relative populations of the two states can be given as N1 = n for the lower state and 
N2 = n/4 for the upper state. Both levels are non-degenerates so g1 = g2 = 1. The energy 
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2 31: Probability II

difference between the states is 500 cm−1. This value can be converted to Joules by multi-
plying by hc. In units of cm–1 the value of c is 2.998 × 1010 cm s-1.

Starting from the expression derived in Additional Problem 31.2,
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we can rearrange to make T the subject,
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The temperature is 519 K.

31.6	 The relative populations of the two states can be given as N2 = 0.3 for the excited state 
and N1 = (1–0.3) = 0.7 for the ground state. The degeneracy of the ground state g1 = 1 
but the excited state is triply degenerate and so g2 = 3. The energy difference between 
the states is 200 cm−1 which can be converted to Joules by multiplying by hc,  
where c = 2.998 × 1010 cm s–1.
Starting from the expression derived in Additional Problem 31.2,
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we can rearrange to make T the subject,
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Substituting into this equation,
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The temperature will be 148 K.
31.7	 At 0 K, water is arranged in a diamond-like tetrahedral structure, with the oxygen in 

the central position with short σ bonds to two hydrogens and longer hydrogen bonds to 
another 2 hydrogen atoms. For every N molecules of H2O, there are 2N atoms of hydrogen, 
which can be arranged in one of 2 positions (attached to the oxygen by a short or long 
bond). Four hydrogens can be arranged around an oxygen atom in 24 (= 16 ways). Only 
6 out of 16 of these arrangements have 2 short and 2 long bonds, and are thus permis-
sible arrangements at 0 K. Therefore only a fraction (6/16)N of the 22N orientations of the 
hydrogens are possible.

W = 22N (6/16)N = 22N (3/8)N = ((22 × 3)/8)N = (3/2)N 
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To calculate the molar residual entropy N = NA and substituting into eqn. (31.14),

S = kB ln(3/2)NA 

Using the third laws of logarithms, we can rearrange as NAkB ln(3/2)

S = R ln(3/2) = 3.4 J K–1 mol–1

This value is in good agreement with the experimentally measured value.

31.8	 In order to calculate the equilibrium constant for the dissociation of Cl2, we need to use 
eqn. (31.3)
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The energy difference between the ground states is equal to the bond dissociation energy
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We also need to calculate the molar partition functions for Cl and Cl2.

Molar partition function of Cl

For an individual atom of chlorine, there are only two contributions to the molar partition 
function: the translational and electronic partition functions.

The mass of a single chlorine atom is 35.5 × 1.66054 ×10–27 = 5.89 × 10−26 kg and the 
molar volume can be calculated using the ideal-gas law Vm = RT/po  = 8.314 × 2500/105  
= 0.208 m3. We can calculate Lambda = 5.86 × 10–12 and the translation partition function 
using eqn. (31.6),
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The electronic partition function qE = gE = degeneracy of the ground state = 4. We calculate 
the overall molar partition function for a chlorine atom as,
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Molar partition function of Cl2

In effect, we want the product of the translational, vibrational, rotational, and electronic 
partition functions for Cl2.

Translational partition function of Cl2

The mass of Cl2 = 2 × 35.5 × 1.66054 × 10–27 = 1.18 × 10−25 kg, T = 2500 K, and  
Vm = 0.208 m3.

Using eqn. (31.6), we say
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Vibrational partition function of Cl2

The speed of light c = 2.998 × 1010 cm s–1, T = 2500 K, and � = 559.7 cm–1.
Substituting into eqn. (31.7), we say
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Rotational partition function of Cl2

�B  = 0.2439 cm–1 and the symmetry number σ = 2, for this homonuclear diatomic molecule. 
Using eqn. (31.9) for high temperatures
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Electronic partition function of Cl2

The ground state of Cl2(g) is nondegenerate and there is a large energy gap to the 1st  
excited state. Therefore gE = 1 and qE = 1.

The overall molecular partition function is,

q = qT qV qR qE = 2.92 × 1033 × 3.63 × 3562 × 1 = 3.77 × 1037.

Equilibrium constant

We can calculate the equilibrium constant using eqn. (31.13), as
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The equilibrium constant K is calculated to be > 1, which tells us the dissociated monomer 
form will predominate at 2500 K.

31.9	 The tunnelling probability P is the ratio of the probability that the particle is in region 3 
(after the barrier) to the probability it is in region 1 (before the barrier). Increasing P will 
lead to a higher probability that the particle tunnels through the barrier.

The expression says that larger particles of mass m are associated with more negative 
terms inside the bracket. The tunnelling probability is therefore smaller. Similarly, the 
tunnelling probability decreases with increased barrier height V0 and width L.

Tunnelling is most likely when the energetic barrier height is relatively low and light 
particles move a short distance.
In scanning tunnelling microscopy, the tunnelling current is proportional to the tunnelling 
probability. The proportionality does not follow a linear relationship, though, because the 
tunnelling current increases by approximately a factor of ten for every 0.1 nm increment 
that the tip is brought closer to the surface.

31.10	 We call the time required for half of the nuclei to decay the half-life, t1/2.
We can rearrange the equation for nuclear decay to make t the subject,
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The probability of a radioactive atom decaying within its half-life is 50%.
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