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Partition functions and wavefunctions

Answers to additional problems

311

31-Monk-Chap31.indd 1

N! 35!

= =6.80x10"
No!N;IN,! ... 15!0!8!510!31210!12!

exp| — -2
N kT

)

Zi:exp(— kgiI’

Using eqn. (31.1), W=

Rearranging the Boltzmann distribution given in eqn. (31.2),

we see that N; = Eexp __&
q ksT

For degenerate energy states, we need to include the degeneracy g, in the calculation of N,

aswe did foreqn. (31.5),N;=g; Eexp[— i)
q ksT
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We can write this as No_po_ &exp[— EJ where AE = ¢, —¢,.
N p & ksT

The most accessible, highest-energy electron to be removed during ionization is that in a
non-degenerate 3s orbital. We assume both states have a degeneracy of 1. Using the equa-
tion derived in Additional Problem 31.2,

N, 495.85x10°
——=exXp| - —= |[=eXpP| -~
N, RT 8.314x(7500+273)

]=4.65><10'4

We have used RT here instead of k,T since the energy is given in molar units (J mol-).

As for the similar halogen molecule in the Worked Example 31.8, we assume that the
degeneracy of the ground state for a chlorine molecule is 1 and for a chlorine atom is 4.
The energy difference between the states AE = 242 kJ mol .

Using the equation from Additional Problem 31.2

3
&:&exp _AE =iexp . 242x10° =3.19x10°°
N & RT) 1 8.314><(1800+273)

Note how the magnitude of this proportion is of parts per million even at this very high
temperature.

The relative populations of the two states can be given as N, = n for the lower state and

N, = n/4 for the upper state. Both levels are non-degenerates so g, = g, = 1. The energy
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31.7

difference between the states is 500 cm~. This value can be converted to Joules by multi-
plying by hc. In units of cm™ the value of ¢ is 2.998 X 10*° cm s
Starting from the expression derived in Additional Problem 31.2,

N, AE hcv
2 =exp| - —— |=exp| - ——
N, ksT ksT

we can rearrange to make T the subject,

N, hcv
In| —= |=——
N, ksT

and then T=- _ hev
ks h{&]
N,
Substituting into this equation
~ . -34 10 _ 21
To_ hcv _ 6.626x107°*x2.998x10 4><500: 9.93x10 - ~519K
kln| 22| 1.38065x10% xIn| /% | 1.38065x10% xIn| -
N, n 4
The temperature is 519 K.

The relative populations of the two states can be given as N, = 0.3 for the excited state
and N, = (1-0.3) = 0.7 for the ground state. The degeneracy of the ground state g, = 1
but the excited state is triply degenerate and so g, = 3. The energy difference between
the states is 200 cm~! which can be converted to Joules by multiplying by hc,

where c=2.998 x 10" cm s

Starting from the expression derived in Additional Problem 31.2,

No_ 8oyl AE )&y hev
N & keT ) & ksT

we can rearrange to make T the subject,

ln[Nzg1 Jz_ hcv

Nig, kBiT

and then T=- o hev

ke m[mj

Nig,
Substituting into this equation,
5 _ -34 10
To_ hcv _ 6.626x10 ><2.998><;(23 :200 —1479K
ky In| 281 1.38065><10’23><1n[ el j
Nig, 0.7x3

The temperature will be 148 K.

At 0K, water is arranged in a diamond-like tetrahedral structure, with the oxygen in

the central position with short ¢ bonds to two hydrogens and longer hydrogen bonds to
another 2 hydrogen atoms. For every N molecules of H,O, there are 2N atoms of hydrogen,
which can be arranged in one of 2 positions (attached to the oxygen by a short or long
bond). Four hydrogens can be arranged around an oxygen atom in 2¢ (= 16 ways). Only

6 out of 16 of these arrangements have 2 short and 2 long bonds, and are thus permis-
sible arrangements at 0 K. Therefore only a fraction (6/16)" of the 22" orientations of the
hydrogens are possible.

W =2 (6/16)" = 2°V(3/8)" = ((2> x 3)/8)" = (3/2)"
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To calculate the molar residual entropy N = N, and substituting into eqn. (31.14),
S =k,In(3/2)"
Using the third laws of logarithms, we can rearrange as Nk, In(3/2)
S=RIn(3/2) = 3.4JK ' mol*
This value is in good agreement with the experimentally measured value.

31.8  Inorder to calculate the equilibrium constant for the dissociation of Cl,, we need to use
eqn. (31.3)

2 2
(qé?m / NA) AE (qé?m) AB
b i )
(qéf;,m /N VBT ggun, URT

The energy difference between the ground states is equal to the bond dissociation energy
AE, =2Uy (Cl)-Uy (Cl) =Dy (Cl-Cl)=242x10°] mol !
We also need to calculate the molar partition functions for Cl and CL,.

Molar partition function of Cl

For an individual atom of chlorine, there are only two contributions to the molar partition
function: the translational and electronic partition functions.

The mass of a single chlorine atom is 35.5 x 1.66054 x 10 = 5.89 x 1072°kg and the
molar volume can be calculated using the ideal-gas law V. = RT/p® = 8.314 x 2500/10°
= 0.208 m®. We can calculate Lambda = 5.86 x 102 and the translation partition function
using eqn. (31.6),

0208 5 =1.03x10%

To— T2
e (5.86x1072)

The electronic partition function ¢* = g* = degeneracy of the ground state = 4. We calculate
the overall molar partition function for a chlorine atom as,

@ = GhmEs =1.03x10% x 4=4.13x10%
Molar partition function of Cl,

In effect, we want the product of the translational, vibrational, rotational, and electronic
partition functions for Cl,.

Translational partition function of Cl,

The mass of Cl, = 2 X 35.5 X 1.66054 X 107 = 1.18 x 10~**kg, T = 2500 K, and
V_ = 0.208 m®.
Using eqn. (31.6), we say
-34
A= 6.626x10 5 =4.14x10"2m
(2nx1.18x10’25 x1.38065x107% x 2500)

r_ 0.208

== =292x10%
(4.14x1072)

Vibrational partition function of Cl,

The speed of light ¢ = 2.998 x 10°cm s, T = 2500 K, and v = 559.7 cm™.
Substituting into eqn. (31.7), we say
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1
qV = 34 10 -23
1-exp(-6.626 10 x2.998x10' x559.7 / (1.38065x 10> x 2500))

=3.63

Rotational partition function of Cl,

B =0.2439 cm™ and the symmetry number ¢ = 2, for this homonuclear diatomic molecule.
Using eqn. (31.9) for high temperatures

R 1.38065x107%* x 2500

= > . -3562.0
2x6.626x107"x2.998x10"" x0.2439

q

Electronic partition function of Cl,

The ground state of Cl,(g) is nondegenerate and there is a large energy gap to the 1st
excited state. Therefore g& = 1 and ¢* = 1.
The overall molecular partition function is,

q=q"q"q" qF = 2.92 X 10% X 3.63 X 3562 X 1 = 3.77 x 10"

Equilibrium constant

We can calculate the equilibrium constant using eqn. (31.13), as

2

(qc?m) _AE (4.13x10%)’ —242x10°

K= exp( 0 ): 37 53~ €Xp =6.58
A RT )~ 3.77x10% x6.023x10 8.314x2500

The equilibrium constant K is calculated to be > 1, which tells us the dissociated monomer
form will predominate at 2500 K.

31.9  The tunnelling probability P is the ratio of the probability that the particle is in region 3
(after the barrier) to the probability it is in region 1 (before the barrier). Increasing P will
lead to a higher probability that the particle tunnels through the barrier.

The expression says that larger particles of mass m are associated with more negative
terms inside the bracket. The tunnelling probability is therefore smaller. Similarly, the
tunnelling probability decreases with increased barrier height V, and width L.

Tunnelling is most likely when the energetic barrier height is relatively low and light

particles move a short distance.
In scanning tunnelling microscopy, the tunnelling current is proportional to the tunnelling
probability. The proportionality does not follow a linear relationship, though, because the
tunnelling current increases by approximately a factor of ten for every 0.1 nm increment
that the tip is brought closer to the surface.

31.10 We call the time required for half of the nuclei to decay the half-life, ¢ .
We can rearrange the equation for nuclear decay to make t the subject,

t=—lln(ij
A ny

=Yan,,s0t,,= _%ln[%nno ]: —%ln(Z’l) _ ln/(lz)'
0

Att
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The probability of a radioactive atom decaying within its half-life is 50%.
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